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Linear registration is often the crucial first step for various types of image analysis.
Although this is mathematically simple, failure is not uncommon. When investigating the
brain by magnetic resonance imaging (MRI), the brain is the target organ for registration
but the existence of other tissues, in addition to a variety of fields of view, different
brain locations, orientations and anatomical features, poses some serious fundamental
challenges. Consequently, a number of different algorithms have been put forward to
minimize potential errors. In the present study, we tested a knowledge-based approach
that can be combined with any form of registration algorithm. This approach consisted
of a library of intermediate images (mediators) with known transformation to the target
image. Test images were first registered to all mediators and the best mediator was
selected to ensure optimum registration to the target. In order to select the best
mediator, we evaluated two similarity criteria: the sum of squared differences and mutual
information. This approach was applied to 48 mediators and 96 test images. In order
to reduce one of the main drawbacks of the approach, increased computation time, we
reduced the size of the library by clustering. Our results indicated clear improvement in
registration accuracy.

Keywords: linear registration, mediator selection, T1-weighted brain image, MNI space, dice value

INTRODUCTION

Image registration is a method used to align multiple images to ensure the spatial correspondence
of anatomy across different images. There are two types of registration algorithm, which are based
on transformation models: linear and non-linear registration. Linear registration is used widely
and predominantly involves six-parametric rigid transformation (rotation and translation on x, y,
and z coordinate axes) or 12-parametric affine transformation (rotation, translation, scaling, and
shearing on x, y, and z coordinate axes). The linear registration is global in nature while non-linear
registration has a higher degree of elasticity which can model local deformation.

Registration is an essential step for many types of medical image analysis including voxel-based
analysis, change detection, cross-modality image fusion and image segmentation [for reviews see

Frontiers in Neuroscience | www.frontiersin.org 1 September 2019 | Volume 13 | Article 909

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00909
http://creativecommons.org/licenses/by/4.0/
adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.3389/fnins.2019.00909
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00909&domain=pdf&date_stamp=2019-09-11
https://www.frontiersin.org/articles/10.3389/fnins.2019.00909/full
http://loop.frontiersin.org/people/118005/overview
http://loop.frontiersin.org/people/383796/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00909 September 11, 2019 Time: 16:19 # 2

Zhang et al. A Knowledge-Based Linear Registration

Gholipour et al. (2007), Despotovic et al. (2015)]. The success
of studies involving image analysis depends heavily upon
registration accuracy. In general, linear registration is an essential
first step for registration-based analysis, followed by local non-
linear registration. Therefore, the quality of the initial linear
registration is often crucial for subsequent steps.

Although it is theoretically simple, in reality, initial linear
registration can be one of the most difficult steps to perform.
This is because a number of factors exert influence and could
lead to the gross failure to align two images; such factors include
different tissue locations and orientations, and the area of tissue
covered by the images. The initial registration is, to some degree,
ill-posed because the computer algorithms used do not have
a priori information relating to the locations of the target organs.
However, these algorithms are asked to align only the target
organs, regardless of whether there are any additional or missing
structures in one of the images. For example, if one of the
images has a larger field of view and contains additional tissues
(for example, data relating to the neck when carrying out brain
MRI), then complications may arise when aligning the target
organ, particularly when their initial locations and rotations are
significantly different when compared between the two images.

To minimize this problem, various types of methods have been
proposed for the cost functions and optimizers. For example,
many intensity-based similarity metrics have been proposed in
order to increase the accuracy of alignment, such as mutual
information (MI) (Maes et al., 1997), correlation coefficient
(CC) (Kim and Fessler, 2004), ratio image uniformity (RIU)
(Woods et al., 1998a,b), Kullback-Leibler divergence (Konukoglu
et al., 2011), and residual complexity (RC) (Myronenko and
Song, 2010; Zhang et al., 2013). Different optimization methods,
including the gradient descent optimization method (Rueckert
et al., 1999; Myronenko and Song, 2010; Qiao et al., 2016)
and the Levenberg–Marquardt optimization method (Fitzgibbon,
2003; Gaidhane et al., 2012) have become widely used. Iterative
methods are also commonly used, in which the degree of
freedom for image transformation, smoothing, and down-
sampling factors are systematically changed (Nestares and
Heeger, 2000). Nonetheless, it is common that alignment failures
still occur occasionally. To reduce the chance of failure, certain
recommendations have been published for widely used tools. For
example, Automated Image Registration (AIR) recommends the
manual removal of non-brain tissues (Woods et al., 1998a,b).

In this paper, we propose a knowledge-based approach to
improve registration accuracy, which can be combined with
any form of registration algorithms. A key component of this
approach is a collection of MR images, referred to as “mediator
images,” which serve as intermediates between a template and
subject images. These mediator images were pre-processed to
identify their transformations into template images (e.g., MNI
space) using linear registration facilitated by manually placed
landmarks. If the subject image could be accurately registered
to one of these mediator images, then a combination of linear
transformation from subject image to the mediator image,
and pre-determined transformation from the mediator to the
template in the MNI space, can be applied for the subject
image. In this study, we used affine transformation based on

the commonly used AIR package. We evaluated our proposed
method against conventional direct registration between the
subjects and the template. In addition, we tested a strategy to
construct an effective collection of intermediate images.

MATERIALS AND METHODS

Data Sources
Template Atlas in the MNI Space
A T1-weighted (MPRAGE) image from the JHU-MNI-SS atlas
was used as the template image, and was based on data from
a single-subject, as described previously (Oishi et al., 2009).
The atlas matrix was 181 × 217 × 181 with a resolution of
1 mm× 1 mm× 1 mm.

Test Data and Mediators
Data were acquired from multiple scanner vendors (GE, Phillips,
and Siemens) and field strengths (1.5 T and 3 T), using
an MPRAGE sequence with site-dependent scan protocols.
A portion of the data were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a
public–private partnership, led by Principal Investigator, Michael
W. Weiner, MD. The primary goal of the ADNI database is
to assess whether serial MRI, positron emission tomography,
other biological markers, or clinical and neuropsychological
assessments can be combined to measure the progression of mild
cognitive impairment and early Alzheimer’s disease. For the data
acquired in JHU, the Johns Hopkins University IRB committee
reviewed and approved the study protocol.

The image resolutions were 1 × 1 × 1 or 1 × 1 × 1.2
with varying matrix sizes across different subjects. All scans
were acquired in the sagittal orientation, which tend to have
much larger fields of view than that of the MNI template. The
brain locations and orientations are also highly variable in this
dataset. Thus, linear registration of these data to MNI templates
are challenging. In this study, test images were registered to
the template using the single-mediator method described in
this paper. All results were then visually inspected and failed
cases were re-registered using manually placed landmarks and
DiffeoMap software1 (see section “Results,” for the failure rate).
These images were further processed through MRICloud2 to
automatically segment the brain. The segmentation quality was
visually inspected and cases with segmentation errors were
removed from the results. In the final dataset, 144 T1-weighted
images were used. These images were randomly divided into
two groups: 96 subjects were used as test data and 48 were used
as mediators.

Study Methods
Registration Algorithm
Image registration was performed using the 12-parameter affine
transformation, the AIR package and trilinear interpolation

1www.mristudio.org
2www.mricloud.org
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(Woods et al., 1998a). Other parameters were set to default values,
including cost function (the ratio image uniformity).

In this study, AIR was chosen because it was one of the first
and most widely used software packages for linear registration of
MR images. While we currently have a wide variety of choices
for linear registration tools with advanced features such as
combinations of different levels of downsampling, smoothing,
and modes, the simplicity of AIR algorithms makes it suitable as
a benchmark for this study.

Measurement of Registration Quality
Registration quality was measured by calculating the degree of
overlap between two binary brain masks. The 96 test images
were previously registered with the MNI template and then
segmented. Therefore, their brain mask (gray matter + white
matter + ventricles) in the MNI space could be used to measure
registration accuracy. To quantitatively evaluate the registration,
we used the Dice coefficient to measure the spatial overlap
between brain masks created from the template and automatically
registered test data. The Dice coefficient was defined as follows
(Dice, 1945):

Dice =
2 |X ∩ Y|
|X| + |Y|

X and Y represented the masked regions from the mediator and
corresponding transformed subject image that is aligned to the
mediator. The Dice coefficient ranges from 0 to 1. The higher
the Dice coefficient, the better the registration. In extreme cases,
the Dice coefficient is 0 (when there is no overlap between two
compared regions) or 1 (for complete overlap). Dice coefficients
are most widely used to measure the degree of overlaps in the
field of neuroanatomy and registration is commonly considered
to be satisfactory when the Dice coefficient is larger than 0.85.
Thus, in this study, a Dice coefficient > 0.85 was considered as
good alignment while a Dice coefficient < 0.85 was considered to
be poor alignment.

Pairwise Direct Linear Registration Between Subject
and Template
Pairwise direct linear registration represents the performance of
the conventional approach. It was performed by directly aligning
data from each subject (96 test data) to the MNI template using
the affine transformation, as illustrated by the red arrowed line
in Figure 1. Transformations (Ts→t) were obtained using AIR,
which was applied to the brain mask of each subject for Dice
coefficient measurement.

Linear Registration With a Single Mediator
We tested if a mediator with similar imaging parameter
could improve the registration accuracy compared to the
pairwise direct linear registration. A mediator was arbitrary
selected from the 48 mediators and performance of the single-
mediator approach was evaluated. The affine transformation was
performed to register each test subject to the single mediator and
the transformation Ts→m) was then obtained. The composition
Ts→m→t) of the transformations between the Ts→m and Tm→t

was performed to transform the test image and the associated
brain mask into the template space, as follows:

Ts→m→t = Ts→m◦Tm→t

where the symbol ◦ denotes the composition of the two
transformation fields. The brain mask, transformed to the MNI
space, was then used to calculate the Dice coefficient.

Linear Registration With Multiple Mediators
Forty-eight brain images were used as mediators. Affine
transformation was first performed to register the test images to
each mediator and the transformations (Ts→mi , i = 1, 2, · · · , 48)
were then obtained. The composition Ts→m∗→t of the
transformation Ts→m∗ and Tm∗→t was performed to transform
the test image and the associated labels into template space,
similar to the single mediator case:

Ts→m∗→t = Ts→m∗◦Tm∗→t

where m∗ represents the best mediator with highest Dice
coefficient. In the ideal situation, we have the knowledge about
the best mediator for a given test image. In this study, the
availability of the brain mask in the MNI space for the test
data allowed us to identify the best mediator; namely, the
mediator with the highest Dice coefficient was considered as
the “true” best mediator. However, it is important to consider
that the best mediator will be unknown in practical situations
where brain masks are not available and the Dice coefficient
cannot be calculated.

The 144 subject images (96 test images and 48 mediators),
the affine transformation matrices from each test image
to mediators Ts→mi , i = 1, 2, · · · , 48), the pre-determined
linear transformation matrices from mediators to MNI space
(Tmi→t, i = 1, 2, · · · , 48) and the experimental results can be
found in https://doi.org/10.5281/zenodo.3360488.

Strategy for Selecting the Best Mediator
To estimate the best mediator, we tested the sum of squared
difference (SSD) and mutual information (MI). Both SSD and
MI criteria were calculated using voxel intensity information
from the whole image following registration between the test and
mediator images.

Sum of squared difference is based on the difference in
intensity when compared between each mediator and the
registered subject image, and is defined as follows:

SSD (X,Y) =
∑

i

(Xi − Yi)
2

where Xi and Y represent the intensity value of the ith voxel of
mediator X and the registered data Y. The smaller the SSD value,
the better the registration. The mediator with the smallest SSD
was selected as the best mediator. Each mediator was normalized
for intensity to the target image using histogram matching prior
to the calculation of SSD.

Unlike SSD, MI does not require image intensity matching
between the two images. Rather, MI is a measure of the
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FIGURE 1 | Schematic diagram of our knowledge-based registration method.

informational correlation between images X and Y, and is
calculated as follows:

MI(X,Y) =
∑
x,y

pX,Y(x, y) log
pX,Y(x, y)
pX(x)pY(y)

where pX,Y(x, y) is the joint distribution of the voxel intensities
of images X and Y. px(x) and pY(y) are the marginal distributions
of images X and Y. MI is based on the assumption that there
is a maximum correlation between the voxel intensities of the
images when they are correctly aligned. MI value range from 0
to 1. The mediator with the highest MI value was selected as
the best mediator. An important note to consider is that the
best mediator depends on the subject and may differ between
different subjects.

Mediator Shrinkage by Clustering
In order to use the multi-mediator approach with a certain
number (N) of mediators, we need to perform registration
N times; the computing time increases proportionally as the
number of mediators increases. Among the 48 mediators, some
mediators may carry redundant information. To reduce the
computation time, with minimum loss of the accuracy, we
tested mediator shrinkage by clustering based on similarity
matrices. The similarity criterion was based on inter-registration
among the 48 mediators, from which SSD values were calculated
as the criteria. The clustering analysis was conducted by the
pheatmap package in R.

RESULTS

The Performance of Pairwise Direct
Linear Registration
Each test image (from 96 subjects) was aligned to the template
directly using affine transformation. The accuracy of the pairwise
direct registration was measured by Dice overlap of the brain
masks. Figure 2 shows the Dice coefficient for the pairwise linear
registration across 96 test images. The Dice coefficients ranged
from 0.556 to 0.945 with a mean of 0.764 ± 0.08. As seen
from Figure 2B, the Dice coefficients of most test images are
located between 0.65 and 0.9, and only 18 test images achieved
a good alignment with a success rate of 19% based on the specific
criterion used (Dice coefficient > 0.85).

Figure 3 shows two examples: a failed case and a successful
case. To further facilitate visual comparison, brain masks were
superimposed on the images. We found that test #61 was
misaligned to the template while test #86 was aligned successfully.

The Performance of Linear Registration
With a Single Mediator
Linear registration was used to align 96 test images to each
mediator (48 mediators in total). Figure 4 shows the Dice
coefficients from 96 test images for two arbitrary-selected
mediators. As shown in Figure 4, the same mediator resulted in
different registration performance across different subjects, while
different mediators produced different registration performance
for the 96 test subjects. For example, mediator #1 was a good
intermediate image for subject #29 (red dot in Figure 4A)
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FIGURE 2 | Dice coefficients obtained by pairwise direct linear registration between test and template images. (A) Dot plot of the Dice coefficients against 96 test
images; (B) Histogram of the Dice coefficients with cumulative percentage.

FIGURE 3 | Examples of failed and successful pairwise linear registration between test and template images. Top row: template image. Bottom row: registered test
images. For visual clues, the brain masks of the registered test images were overlaid onto the template image.

but was poor for subject #75 (green dot). On the other
hand, mediator #17 was excellent for subject #75 but poor for
subject #29. Overall, mediator #1 produced a better performance
of linear registration, compared to mediator #17 which is
clearly illustrated in Figure 4B. Across the 48 mediators, the
average Dice coefficient was 0.840 with a 55% success rate
(Dice > 0.85). Compared to pairwise direct linear registration,
the single mediator approach improved the mean Dice coefficient
and success rate.

The Performance of Linear Registration
With Multiple Mediators
For each subject, the mediator with the highest Dice coefficient
after linear transformation was considered to be the best
mediator. Figure 5 shows the performance of linear registration
using the best mediator for each test subject. The Dice coefficient
ranged from 0.900 to 0.966 with a mean of 0.931. The Dice
coefficients are centrally located between 0.90 and 0.96 as

shown in Figure 5B. Thus, it was possible to achieve successful
registration for all subjects if the best mediator for each subject
was selected. Note that none of the Dice coefficients among 96
subjects is larger than 0.98 which can be well explained by that
linear registration can not change the brain shape and perform a
perfect alignment between mediator and subject.

Figure 6 shows a comparison of the performance of linear
registration with the best selected mediator, based on SSD and
MI. The rate of success alignment (Dice coefficient > 0.85) is 99%
and 96% for SSD and MI-based selection criteria. The mean Dice
coefficients were 0.921 and 0.912 for SSD and MI, respectively.

The Performance of Mediator Reduction
by Clustering
The 48 mediators were clustered into 25, 14, 9, and 6 groups
based on the similarity among these groups. Figure 7 shows
a comparison of linear registration performance using the 48
mediators along with number-reduced mediators. The mean Dice
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FIGURE 4 | Dice coefficients obtained by linear registration using two arbitrary mediators for 96 test subjects. (A,B) Mediator #1; (C,D) mediator #17. Cases #29
and #75 are shown by red and green colors, respectively.

FIGURE 5 | The highest Dice coefficient among the 48 mediators used for each subject. (A) Dot plot of the Dice coefficients against 96 test images; (B) histogram of
the Dice coefficients with cumulative percentage.

coefficients were 0.921, 0.920, 0.911, 0.910, and 0.911, while the
success rates were 99, 99, 94, 94, and 96% for the 48 mediators
and the reduced mediators (25, 16, 9, and 6), respectively. The

registration accuracy was slightly reduced with the 25 mediators
(approximately reduced by 2) and there was a further reduction
to a 4–5% failure rate for 14 mediators and less.
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FIGURE 6 | Dice coefficients obtained by linear registration with the best mediator, as selected by SSD and MI criteria. (A) Dot plot of the Dice coefficients against 96
test images; (B) histogram of the Dice coefficients with cumulative percentage.

FIGURE 7 | The effect of mediator reduction on Dice coefficients. (A) Dot plot of the Dice coefficients against 96 test images; (B) histogram of the Dice coefficients
with cumulative percentage.

DISCUSSION

The Role of Linear Registration and
Potential Problems
Linear registration is often the first step for various forms of
image analysis and, thus, the quality of subsequent processing
steps are heavily influenced by the accuracy of the linear
registration step. Although linear registration is a theoretically
simple step, it can be associated with a range of practical
challenges due to unpredictability in the morphological and
spatial variability of test data relative to the template to which the
data are registered.

There have been numerous algorithms proposed to minimize
the risk of failure in this initial alignment process. Probably
one of the most widely used approaches is to perform iterations
with varying degrees of down-sampling, smoothing factors, and
the degree of freedom for the transformation (3–12 modes).

As a publicly available resource, the Insight Tool Kit (ITK) has
been extensively used in many image analysis tools (Johnson
et al., 2018). Currently, example codes from ITK libraries
provide 12 different choices for linear registrations; as the
algorithms become more advanced, the number of parameters to
optimize also increases. The ITK guidebook reports that there are
“numerous parameters involved in tuning a registration method
for a particular application” and “it is not uncommon for the
registration process to run for several minutes and still produce a
useless result” (Johnson et al., 2018).

Figure 2 shows 96 test images; of these, only 18 test images
achieved good alignment (Dice coefficient > 0.85) to the
template. This high failure rate (81%) was somewhat exaggerated
because of two factors. First, we employed a simple registration
algorithm without iterative approaches. Second, there were
large geometrical differences between the test data and the
template (the MNI coordinate space); the test data were obtained
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from widely used sagittal protocols, which tend to have much
larger fields-of-view than that of the MNI space template.
Furthermore, brain positions and orientations were not acquired
using consistent criteria in this heterogeneous dataset. Finding an
appropriate alignment to the MNI space is a challenging task for
automated algorithms. This baseline data is, however, suitable to
examine the improvement of registration accuracy by employing
multiple mediators.

Knowledge-Based Approach
In the approach described herein, improvement of the
registration algorithm was not the prime target of the research.
Rather, our goal was to use multiple mediators, which can
be considered as a knowledge-based approach, because each
mediator carries a pre-determined transformation matrix
to register them to the MNI space. As the quality of the
transformation matrices were confirmed by visual inspection,
and corrected by manually placed landmarks as necessary,
there was good infusion of human knowledge. One drawback
of this knowledge-based approach is that it was specifically
designed for sagittal scan protocols. Consequently, knowledge
may need to be developed for other types of protocols that
deviate significantly from typical sagittal protocols, such as
coronal and axial MPRAGE scans or multi-slice spin-echo
T1-weighted images. The improvements obtained by the use
of mediators were obvious, even when only one mediator
was utilized (Figure 4); the mean success rate using this
approach improved to 55%. Using the entire mediator library
(48 mediators), the success rate could potentially reach
100% (Figure 5).

The Use of Matrices to Select Mediators
The success rate, as defined by the paper, is 100% when
the best mediator was correctly chosen (Figure 5). However,
in reality, there is no a priori knowledge relating to the
best mediator. It is prudent to point out that in this study,
accuracy values (Dice coefficients) could be calculated because
the test images were provided from our pre-segmented atlas
libraries. This enabled us to choose the best mediator using
a posteriori DICE evaluation. Also important to note is that
a high Dice coefficient cannot assure that tissues within the
segmented mask are well aligned. These small misalignments
between tissues can be further corrected by a following non-
linear transformation. In the implementation, we selected the
specified brain mask (gray matter + white matter + ventricles)
to calculate the Dice coefficient. Theoretically, the segmented
mask with gray matter, white matter and ventricles has
large segment size which is more suitable for the alignment
evaluation (Taha and Hanbury, 2015). By visual inspection,
we found that the registered subject image with high Dice
coefficient has a good overall alignment to the mediator
and vice versa. Besides the Dice coefficient, the distance-
based metrics such as mahalanobis distance and probabilistic
distance can be considered as an alternative measurement
to evaluate the registration (Taha and Hanbury, 2015) which
is beyond the scope of the current study. In reality, the
performance of the multi-mediator approach hinges upon a

similarity metric in order to select the best mediator. In the
present study, we tested SSD and MI, which are widely used
as cost functions to estimate the goodness of the alignments.
We found that SSD showed a higher performance (99 vs.
96% of success rate), although, neither SSD nor MI could
achieve the best performance based on a posteriori mediator
selection. The performance of intensity-based metrics could
be influenced by the spatially varying intensity heterogeneity
across varying mediators. Consequently, the methodology used
to select the best similarity measure, still needs further
improvement. The mediator selection can also considered
as finding the nearest neighbor of the subject image with
a defined distance function which is basically “1-nearest-
neighbor classification” (Kumar et al., 2008). Along the line
of this concept, more elaborated approach could be tested
to improve the final registration performance. For example,
we could borrow the idea of k-nearest neighbors classification
algorithm (Belongie et al., 2002; Weinberger and Saul, 2009)
in which k similar mediators with nearest neighbors to the
subject image are selected and the corresponding k combined
transformations with weighted averaging are used as the
final transformation from the subject image to MNI space.
In addition, the deep learning-based classification, such as
convolutional neural network (Krizhevsky et al., 2017; Sultana
et al., 2018), could be adapted to predict the best mediator
more accurately which generally needs vast amounts of data with
classification labels.

The idea of selecting appropriate atlases from an atlas library
based on similarity measures is widely used for multi-atlas
segmentation techniques (Wang et al., 2013a,b). Our approach
should be considered as an extension of previous work within the
context of initial linear alignment (i.e., mediator selection).

Recently, similar strategies have been reported, which also
utilize a mediator to improve the accuracy of image registration.
For example, several learning-based registration methods have
been proposed to predict the initial deformation field (Tang et al.,
2009; Kim et al., 2012, 2015); in such methods, the estimated
initial deformation is applied onto the template image to create a
deformed template as an intermediate image which is close to the
subject. Thus, the registration between the subject and template
is reduced to the simple problem of registering the subject to the
estimated intermediate template. The creation of a synthesized
mediator such as this could represent an alternative way to our
simpler mediator library approach.

Computation Time and the Number of
Mediators
The proposed knowledge-based method requires the user
to repeat linear registration for each mediator. Therefore,
computation cost could represent one of the drawbacks of
this approach. For example, we collected 48 subject images as
mediators in which linear registration needed to be repeated 48
times for each test data. In our research, affine linear registration
by the AIR package took 6 min for the 48 mediators using
a Windows 10 computer equipped with an Intel(R) Xeon(R)
CPU 2.00 GHz (2 processors) and 16 GB RAM. Because
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the linear registration of each mediator to the test image is
independent, parallel computing could significantly accelerate
the linear registration process.

In general, increasing the number of mediators is expected
to lead to a lower failure rate. However, the computing time
is linearly correlated with the number of mediators. In our
test data, the best mediator delivered Dice coefficients in the
range of 0.90–0.96 (Figure 5), which are typically close to
maximum we can expect for cross-subject registration based
on past publications (Aljabar et al., 2009; Chupin et al.,
2009; Klein et al., 2009; Lotjonen et al., 2010; Wang and
Yushkevich, 2013). Thus, the library of 48 mediators were
suffice and the technical focal point was to identify the best
mediator using image-based metrics such as SSD and MI
values. A question that naturally follows this observation was,
then, “can we achieve similar results with less mediators?” To
maximize the computational efficiency and minimize the loss
of accuracy, we tested mediator clustering based on cross-
mediator similarity. The similarity criterion was based on
the cross-mediator registration and the measurement of SSD
values. In other words, if one mediator could be registered
to the other with high accuracy (thus low SSD), we assumed
that only one of them would be needed to represent the
specific geometric features. In our research, we grouped 48
mediators into 25, 14, 9, and 6 clusters, respectively. Reduction
in the number of mediators by clustering slightly reduced the
registration accuracy from 48 to 25 mediators but significantly
improved computing efficiency (Figure 7). Practically, the
performance of the mediator library should now be evaluated
using larger scale studies. Building up a robust library may also
require a feedback mechanism, through which failed cases are
incorporated into the library.

CONCLUSION

In this study, we tested the performance of a mediator-based
linear registration approach. When there was a large amount
of geometrical differences between the test subject and template
images, a library of mediators was deployed, which have
previously defined transformation matrices to the final target
space. Compared to direct registration between test and target
images, the mediator-based approach substantially improved
registration accuracy and reduced failure rates. The performance
of this approach, however, relies on mediator-selection methods,
in which a mediator was selected because it had the most similar
image features to the test image. In terms of similarity measure,
we tested SSD and MI. Even though both of these measures
performed well, there is still room for improvement. Reducing
the number of mediators by SSD-based clustering showed
potential with which to maximize efficiency with minimum
loss of accuracy.
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